Enumeration and Asymptotic Properties of Unlabeled Outerplanar Graphs
نویسندگان
چکیده
We determine the exact and asymptotic number of unlabeled outerplanar graphs. The exact number gn of unlabeled outerplanar graphs on n vertices can be computed in polynomial time, and gn is asymptotically g n −5/2ρ−n, where g ≈ 0.00909941 and ρ−1 ≈ 7.50360 can be approximated. Using our enumerative results we investigate several statistical properties of random unlabeled outerplanar graphs on n vertices, for instance concerning connectedness, the chromatic number, and the number of edges. To obtain the results we combine classical cycle index enumeration with recent results from analytic combinatorics.
منابع مشابه
Enumeration of Unlabeled Outerplanar Graphs
We determine the exact and asymptotic number of unlabeled outerplanar graphs. The exact number gn of unlabeled outerplanar graphs on n vertices can be computed in polynomial time, and gn is asymptotically g n −5/2 ρ , where g ≈ 0.00909941 and ρ ≈ 7.50360 can be approximated. Using our enumerative results we investigate several statistical properties of random unlabeled outerplanar graphs on n v...
متن کاملGenerating Outerplanar Graphs Uniformly at Random
We show how to generate labeled and unlabeled outerplanar graphs with n vertices uniformly at random in polynomial time in n. To generate labeled outerplanar graphs, we present a counting technique using the decomposition of a graph according to its block structure, and compute the exact number of labeled outerplanar graphs. This allows us to make the correct probabilistic choices in a recursiv...
متن کاملAsymptotic Study of Subcritical Graph Classes
We present a unified general method for the asymptotic study of graphs from the so-called “subcritical” graph classes, which include the classes of cacti graphs, outerplanar graphs, and series-parallel graphs. This general method works both in the labelled and unlabelled framework. The main results concern the asymptotic enumeration and the limit laws of properties of random graphs chosen from ...
متن کاملOn packing chromatic number of subcubic outerplanar graphs
The question of whether subcubic graphs have finite packing chromatic number or not is still open although positive responses are known for some subclasses, including subcubic trees, base-3 Sierpiski graphs and hexagonal lattices. In this paper, we answer positively to the question for some subcubic outerplanar graphs. We provide asymptotic bounds depending on structural properties of the weak ...
متن کاملBoltzmann Samplers, Pólya Theory, and Cycle Pointing
We introduce a general method to count unlabeled combinatorial structures and to efficiently generate them at random. The approach is based on pointing unlabeled structures in an “unbiased” way that a structure of size n gives rise to n pointed structures. We extend Pólya theory to the corresponding pointing operator, and present a random sampling framework based on both the principles of Boltz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 14 شماره
صفحات -
تاریخ انتشار 2007